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Abstract 

This paper attempts to relate robust control and behavioral frameworks by incor- 
porating structured uncertainty into the description of behavioral systems. Behavioral 
equations are expressed as linear fractional transformations (LFTs) on an uncertainty 
structure, and a method of interconnection is outlined. A method for obtaining input- 
output maps from LFT representations of behavioral systems is also presented. This 
extension of the behavioral framework is compatible with existing robust control meth- 
ods, such as p analysis, which can be used to provide robustness tests in behaviors. A 
simple example is presented that illustrates some of the issues which arise in this extension. 

1 Introduction 

A major theme in robust control has been to  supply the engineer with a theoretical and 
computational framework that  handles a rich variety of modeling uncertainty so that  physi- 
cally motivated uncertainty descriptions can be treated in a natural manner. In particular, 
i t  has been important t o  provide computational tools that analyze systems with mixtures of 
unstructured uncertainties and possibly large numbers of uncertain real parameters. Behav- 
ioral models are in turn very natural when modeling physical systems from first principles, or 
when a large system is built up from subsystem models. While the final interconnected model 
used in a robust control design may have well-defined inputs and outputs, i t  is almost always 
the case that  components are modeled in terms of mass, momentum, or energy balances or 
physical laws such as Newton's second law, Ohm's law, and so on. These components do not 
have a pre-specified signal direction, and forcing them t o  be input-output operators assumes 
a knowledge of the ultimate function of the device. The reader is referred t o  [I] for a detailed 
exposition of the issues outlined above. 

The behavioral setting provides a convenient framework for connecting modeling and 
robust control. Uncertainty can be incorporated in the description of behavioral systems 



via linear fractional transformations (LFTs). By describing these systems as LFTs, existing 
robust control methods, such as p analysis and synthesis, can be used to  provide robustness 
tests in behaviors. 

2 Background 

2.1 Behavioral Systems 

The behavioral framework has been extensively described and developed by Willems in [2], of 
which a summary relevant to this paper may be found in [I]. In the interest of completeness, 
a brief summary follows. A dynamical system is viewed as a family of trajectories, and is 
defined as a triple C = (U, W, B), with U a subset of W called the time axis, W the signal 
space, and B a subset of called the behavior. 

In the absence of uncertainty, we will be concerned with continuous-time, linear, time 
invariant, finite dimensional dynamical systems. In particular, we require that T = IW+ and 
W = Wq. In [3], it is shown that this is equivalent to requiring B to  be the kernel of a 
polynomial operator in the differentiation operator, 2. We will also restrict ourselves to  time 
trajectories w that are locally square integrable: 

for all compact sets R c R+, which will be denoted w E L;". We will refer t o  the class of 
dynamical systems with the above properties as L. 

Although continuous time systems are considered in this paper, most of the results pre- 
sented can either be applied directly to discrete time systems, or can be trivially extended to 
the discrete time case. The same can be said for the signal space chosen. We have chosen to  
consider time trajectories that are locally square integrable, but the results generalize to all 
L:" spaces. 

2.2 Linear Fractional Transformations 

LFTs are a class of general linear feedback loops, and can be pictorially depicted as follows: 

Figure 1: Linear Fractional Transformation 

We will be interested in cases where M is a constant, finite dimensional matrix and A is, 
as of yet, an unspecified operator. If we partition h4 as 



we have the following loop equations: 
z = Az+Bw 

If the inverse of ( I  - AA) exis.ts, the vectors v and w satisfy 
v = S(A,  M ) w ,  where 

s ( a ,  M )  = D + c n ( r  - AA)-'B 
S(A, M )  is called an LFT between A and M. A will usually belong to  an allowable set of 
operators, A. We will consider A structures of the form 

A  = {dias[JI, AUI) ( 5 )  

where A, is a structured set of bounded, linear operators on L P ,  referred to  as the uncertainty 
block. Often we will need norm bounded subsets of A,, and we introduce the notation 

B*,, = {A E : 11 A, I \< € 1  (6) 
Note the norm bound is only on the uncertainty portion of A, A,. 

Many systems with uncertainty can be represented using LFTs. For example, uncertainty 
in the physical quantities of a system, such as mass or capacitance, can easily be written as 
LFTs on an uncertainty block. The same is true for arbitrary operators on variables, which 
might arise, for example, when modeling the effects of friction on a system. The interested 
reader is referred to  [I] and [5] for examples of the type of uncertainty that may be represented 
by LFTs. 

3 Representation 

In order t o  include uncertainty into our system description, it is desirable to  first explore how 
systems without uncertainty may be modeled. Incorporating uncertainty into our system 
description should then ideally be a natural extension of the existing framework. 

Consider the following equations: 

i = Ax+Bw (7) 

0 = Cx+Dw 

where A, B, C, D  are constant, finite dimensional matrices. Then it can be shown (see [4]) 
that the behavior of a dynamical system C in 6: can be characterized as 

B = {w E L!" Ix E L!' for which (7) is satisfied) (8) 
for some A, B, C, and D. Equations (7) are referred to as an output nulling (ON) repre- 
sentation of C, and is denoted {A, B,  C, D). There are many other equivalent state space 
representations of dynamical systems in L, see [6] and [7] for example. As will be seen, 
however, ON representations can be naturally extended to  incorporate uncertainty into our 
system description. 

The following definitions apply to  the set {A, B, C, D) : 



Definition 1 ON Representation {A ,  B, C ,  D} of C is said to be 

Dependent if, V s E C, D + C ( s I  - A)-' B is not surjective 
Regular if D is surjective 
Singular i f  not dependent and not regular 

It follows that regular representations can never be dependent, and vice-versa. In the singular 
case, the rank of D + C ( s I  - A)-'B is normally full but drops at s = oo. It should be stressed 
that the above are properties of the ON representation of C, not of C itself. As will be seen, 
it is desirable to  work with regular representations of systems in C. Given an ODE, it is a 
straightforward matter to  obtain from it a regular ON representation. Consider the following 
ODE 

P I ( Q ) W I  + P Z ( ~ ) W Z  t . . .pn(a)wq = 0 ( 9 )  
where pj is a polynomial in a = 5, and w j  are the manifest variables. Let k be the highest 
power of a appearing in equation (9). Then define ~ ( a - l )  = p j (a )a - i .  It follows that 
polynomials pj can be expressed as 

1+1 

iT J - - bijai-'-l ,  bl+l,j # 0 for some j 
i= l  

Now define 

Then the set of all solutions w of 

is equivalent t o  the set of all solutions of equation (9) .  Furthermore, {A, B ,  C ,  D) is regular, 
by construction. It is also minimal in the sense that matrices A, B, C, D cannot be made 
smaller, since ( C ,  A) is observable and D is sul-jective, a result proved in [4]. 

When more than one ODE constitutes a system, a regular ON representation may be 
obtained by first using the above procedure for each ODE, and then using the interconnection 
procedure outlined in the interconnection section of this paper. 

An output nulling representation may be interpreted as an LFT between a constant matrix 
and an integration operator: 



Figure 2: ON Representation as LFT 

where it is understood that x =  lid^ f x(O), ie., the initial values of the integrator 
states need not be 0. 

The above LFT interpretation motivates how uncertainty should be incorporated into our 
description, and leads to  the following definition: 

Definition 2 A n  uncertain dynamical system is in  general a parameterized family CA = 
(CA : A E A) of dynamical systems, and is denoted by a quadruple CA = ( T ,  W, A ,  BA). 
The parameter A E A incorporates the system uncertainty. 

W e  will consider uncertain dynamical systems for which the parameterized behavior may 
be expressed as 

where M is a constant matrix, referred to as the representation matrix, and A varies in  a set 
of structured operators, A. This representation is denoted ( A ,  M ) ,  and is called a Generalized 
Output Nulling (GON) representation of CA. 

Setting A = J I yields the same behavior as ON representation ( A ,  B, C, D), where the 
representation matrix M is partitioned accordingly. In the presence of uncertainty, A is of 
the form 

This choice of A induces a natural partition of representation matrix M: 

An Anu Bn 
M = A,, A, B, 

C u D l  

where subscript n implies nominal and subscript u implies uncertain. 
As in the case of no uncertainty, a GON representation is said to  be regular if D is 

surjective. We will be interested in uncertain dynamical systems for which there exists a 
regular GON representation. There exist systems for which the regularity assumption is not 
valid. Consider the following equation: 

where S is a real parameter, and x a variable. It can be easily verified that there does not 
exist a GON representation of the above with D non-zero. In a sense, the above is a result 
of choosing a "bad" value for the nominal coefficient multiplying x ,  in this case 0. The 



assumption of regularity implies that the system behavior at A, = 0 is in some sense similar 
to  the system behavior in a neighborhood of A, = 0. In the simple example above, this 
problem could be remedied by defining a new real parameter 8 = S - 1, and rewriting the 
above equation as (1 + 8)x  = 0. It should be noted, however, that the nominal constraint is 
now x = 0, as opposed to  no constraint on x when S = 0. 

There are some transformations on the representation matrix which are behavior preserv- 
ing. We have the following result: 

Lemma 1 Given representation matrix A4 = 1 :], a is an equivalent representation 

matrix i f  
T - I (A  + LC)T T- l (B  + L D )  

PCT PD 1 - 
where L is any matrix, P  is any square, invertible matrix, and T is any square, invertible 
matrix such that T-'AT = A V A  E A 

The proof of the above is a direct extension of Theorem 3.20 in [4]. Matrices L, P, and T 
can be interpreted as follows: L injects the output of the LFT into the state equation. Since 
the output is required to  be zero, the behavior is obviously preserved. Similarly, bijectively 
mapping the output of the LFT by P to  another output space does not alter the behavior, 
since the output is zero. Finally, T can be interpreted as a state transformation. 

In the absence of uncertainty, and when the representation is minimal in the sense that 
matrix M is as small as possible, the implication in the above lemma goes the other way also; 
all equivalent representations are related as in equation (17). Whether this is also true for 
minimal representations of uncertain systems is an open research question, aspects of which 
are considered in [8]. 

4 Interconnection 

Interconnection of systems without uncertainty in a behavioral setting is formally defined in 
[2]. For the purpose of this paper, we will use the following simplified definition: 

Definition 3 The interconnection of two systems with the same signal space XI = (R+, Rq, B1) 
and C 2  = (R+, Rq,B2) is denoted C 1  A C2, where E l  A X 2  = (W+, Wq, B1 n B 2 )  

Thus interconnection can be interpreted as the intersection of behaviors, or as combining 
constraint equations. The requirement that the signal spaces of two systems be equal before 
interconnection can easily be accommodated by augmenting the signal space of each system 
to include the other system's variables. 

The machinery of interconnection presented below may be used when building a model 
from first principles, or when systems are connected together. Mathematically they are equiv- 
alent, since both consist of combining constraint equations. As stated in the previous section, 
a system of ODES can be represented by a regular ON representation by simply building ON 
representations of each ODE, and then interconnecting them. 



Proposition 1 Given regular ON  representation,^ {AI, B1, C1, Dl)  and {Az, Bz, Cz, Dz) of 
two systems C1 and Cz with the same signal space, an ON representation of their intercon- 
nection C1 A C2 is 

A1 0 C1 0 
s = { [  0 A,] [:::I [ 0 c,] [;:I} 

The above follows immediately from the definition of interconnection, and can be trivially 
extended to  the interconnection of more than two systems. 

There are three distinct cases which may arise. S may be dependent, singular, or regular. 
A dependent representation may be obtained when there are redundant constraint equations. 
In electrical circuits, this can easily occur when there are too many loop or node equations. It 
is desirable in these cases to simply omit the redundant equations. Singular interconnections 
arise when the interconnection forces an algebraic constraint between states in the subsystems. 

We can think of interconnection in two contexts. First, when interconnection is simply an 
artifice of our modeling process, where we have broken the system into subsystems. In this 
case, a singular interconnection is simply a flag that our states are constrained and therefore 
we might want to  simplify the model. A simple example is the modeling of two capacitors 
in parallel using two states for the voltages across the capacitors. There exists an algebraic 
constraint on the states that requires them to be equal for all time. 

Second, when a physical interconnection is established at a parlicular instant i n  time. In 
this case, a singular interconnection would require that the states be matched in advance, 
otherwise we will have a transient phenomenon which is not modeled and is potentially dam- 
aging. If two capacitors are connected together in parallel, one must be aware that unless the 
residual charges on the two capacitors are compatible, a large current will fiow at the time of 
contact. We will not deal here with describing such phenomena, which are considered in [9]. 

We can extend Definition 3 to include uncertainty: 

Definition 4 The interconnection of two systems with the same signal space CAI = (R', Rq, A l ,  Bal) 
and CA2 = (Rf ,  Rq,  A 2 ,  a*,) is denoted Call\CA2, where = (RS, Rq, (A,, A,), Bc3,,n 

>. 
A similar extension of Proposition 1 yields 

Proposition 2 Given regular GON representations (A l ,  MI) and (A2 ,  M2)  of two systems 
CAI and CA2 with the same signal space, a GON representation of their interconnection 
CAI A CAz is 

h!! = 

- 
Aln 0 Al," 0 Bl, 

0 Az, 0 Az,, B2, 

Al,, 0 Al, 0 B1, 
0 Az,, 0 Az, Bz, 

C1, 0 C1, 0 Dl 
- 0 Cz, 0 C2, 0 2  

'3 = {diag [ J I ,  A,, , A,,] 1 



Ai, Ai,, Bin 
Mi = A;,', A;"' Bi" 

ci, ci, Di i I 
Ai  = {diag [ J I ,  Aui] ) 

In order to  check whether the interconnection of two systems is regular or not, we must 
start out with regular representations. After interconnection, we would also like to  make 
the resulting representation regular. What follows is one step of a recursive procedure which 
enables us to  construct a regular GON representation from one that is not. 

Consider a GON representation ( A ,  &) of CA, where Ak is partitioned as in (15). We 
then have the following equations: 

If D is not surjective, there exists a non-singular rnatrix P such that the last row of PD 
is zero. Furthermore, since P is non-singular, the solutions to  the above equations are not 
changed if the last equation of (20) is pre-multiplied by P. Therefore i t  can be assumed, 
without loss of generality, that the last row of D is zero, which results in the equation 

where enV is the last row of matrix en, and cur is the last row of matrix C?:,. 
If cnr and cup are zero, the GON representation is said to be dependent, which generalizes 

our previous definition of dependent. In the case of a dependent representation, another 
representation exists with at  least one fewer constraint equations. One such representation 
can obtained by truncating the last rows of e n ,  eu, and D. If the truncated D is still not 
surjective, the process may be reiteiated. 

When eUr is zero and enr is not equal to  zero, there exists an invertible matrix T such 
that cn rT  = f10  . SO]. Letting z = T-'2 results in the following equivalent representation 
matrix 

An Anu Bn T-~A,T T-~A,, r l B n  
A,,T A, 

~u D 
We then have the following: 

Differentiating the last equation yields 



where A,, is the first row of A,, A,,, is the first row of A,,, and B,, is the first row of B,. 
Note that the above equation implies that x1 = constant, not 0, therefore xl  = 0 must be 
incorporated into our state space equations. Therefore representation 

along with the constraint zl  = 0 yields the same set of solutions w as M. But the constraint 
x1 = 0 can be imposed directly on representation matrix M by removing the first row and 
first column of M ,  resulting in representation matrix M which has one less integrator state. 

It immediately follows that the above step could be repeated until a regular GON repre- 
sentation is obtained: 

Proposition 3 Assuming that c,~ = 0 whenever D, = 0 in  the above step of the recursive 
reduction procedure, a regular GON representation can be obtained from a non-regular GON 
representation i@ in at most N steps, where N is the dimension of matrix A, 

If eUr is not equal to  zero when D, is zero, the reduction procedure as outlined will 
not work, even though a regular representation may exist. All the examples which we have 
devised that cause the reduction procedure to fail with a constant P matrix, however, have 
had no physical interpretation. 

The shortcoming of the procedure is that multiplying the last row of (20) by an invertible, 
constant, matrix P is not general enough. In fact, P can be any invertible operator, not 
necessarily constant. For the case where the uncertainty structure consists exclusively of 
scalar times identity blocks, which arise naturally when dealing with parametric uncertainty, 
we have devised a method which enables us to continue the reduction procedure when a 
regular representation exists, at the cost of greatly increasing the complexity of the uncertainty 
structure. The final representation is also only valid locally about A, = 0. The main idea is 
to  close the LFT loop on the uncertainty structure, and reduce D(A,) to  row reduced echelon 
form by left multiplying with matrix P(&,), where A, is an augmented version of A,. This 

is d@&&edfk$~owing P to be an invertible operator, it still may not be possible to  make 
cur zero when b, is zero. For parametric uncertainty, this occurs when D(A,) loses rank 
at  A, = 0, but not in a neighborhood of A, = 0. An interpretation is that there may 
exist algebraic constraints on the integration states at A, = 0, but not in a neighborhood of 
A, = 0. A si-mple example is depicted in ,Figu,re 4. 

The nominal resistance IS zero, which implies that the voltages across the capacitors must 
be nominally equal, but may be different for all other values of 6,. Clearly the problem arises 
due to  the zero nominal resistance, a poor modeling choice. 



Figure 3: Multiplying by P(&) 

Figure 4: System without Regular Representation 

Issues such as whether physically motivated examples exist for which the procedure breaks 
down, how to deal with full uncertainty blocks when using the augmented reduction procedure, 
and how to reduce the complexity of the augmented procedure are open research questions. 

Non-regular representations which can be reduced to regular representations will be called 
singular, which generalizes the previous definition of singular. 

5 Input-Output Map Representation 

As discussed in [I], it may be required to represent the behavior of a system Z;'A in input- 
output form. This may be the case if existing robust control methodologies are to  be used for 
the purpose of designing robust controllers, as these methods require a distinction between 
system inputs and outputs. The reader is referred to  [2] for a characterization of input and 
output variables. We will restrict ourselves to input-output maps which are nominally proper. 

Given a GON representation, we need to know how many variables may be chosen as 
inputs. 

Proposition 4 Given a regular representation ( A ,  M )  with D E RrXq, any input-output map 
must have r outputs and q - r inputs. 

Proof: 
First, note that the input-output map must be valid for the nominal system. Thus we 

can restrict ourselves to  the case of no uncertainty. Then it is a simple matter to  convert the 
ON representation to  an AR representation, and then invoking Theorem VIII.7 in [2] (which 
states that an AR representation with r independent equations must have r outputs). 



Let (A,  M )  be a regular representation of CA.  We then have the following: 

p = A A p  + Bw (26)  
0 = C A P +  Dw 

Since D is surjective, there exists permutation matrix II = [IIllIz] such that DHl is invertible. 

Let w = II [.I. Then we have 

where 
B1 = BIIl, Bz = BIIz, Dl = D n l ,  Dz = DIIZ 

Isolating y and substituting in the p equation yields 

Note that the above is in the form of an LFT relating y and u. As of yet, all operations 
performed have been behavior preserving. If, however, it is required that u vary freely and 
determine y, i t  must be possible to  solve for p, ie., for a given u E I,',"", there must exist a 
p E L',"". This might not be the case for all possible values of A in A .  We have the following 
main result: 

Theorem 1 Given regular GON representation ( A ,  M )  of CA = (RS, Rq, A, Ba), there exists 
a partition of Rq = WP x W m ,  a permutation matrix TI, a constant matrix Milo, and a number 
E strictly greater than zero such that 

for all A E BA,,. (A,  MI/,, II) will be referred to as an I/O representation of CA 

Proof: Consider the following equations 

x = Anx  + A n u A u z  + Bnu 

z = Aunx + A,A,z+ B,u 

y = Cnx + CuAuz + DI/OU 

which correspond to  (28) when the matrices are partitioned into their corresponding nominal 
and uncertain parts, and p = ( i ,  z ) .  It is clear that for sufficiently small A,, ( I  - A,A,) will 
be invertible. In other words, there exists an 6 > 0 such that ( I  - &A,) is invertible for 
1 1  A, 1 1  < E .  We then have the following 



where 

We have the following technical lemma, whose proof may be found at the end of this section, 
which is central to  proving the theorem: 

Lemma 2 Given f E L!jc, O : L!jC -+ L!jc, 11 O 115 M < oo, O causal and linear, and L a 
constant square matrix, \J initial conditions x(0)  - so 3 unique x ( t )  for t 2 0 such that x ( t )  
solves (31) a.e.. 

Invoking Lemma 2, we conclude that x can be determined from u ,  and that x E L',"". It 
then follows from (30) that z can also be solved for, and that z E L:". Finally, since y is a 
bounded function of x ,  z, and u,  y must also be in Lpe. 

We then have the following corollary: 

Corollary 1 A valid 1/0 representation matrix Milo of CA is 

How can we get a good bound for r? One way is to  perform a p test on the matrix A, 
is the largest value for with block structure A,. By the definition of p, see [ l o ] ,  6 = - 

PAu ( A = )  
which ( I  - A,A,) is invertible for 1 1  A, I /< e .  We then have the following corollary: 

Corollary 2 A value of r consistent with Theorem 1 is h, when 

Proof of Lemma 2: Pick an interval 10, TI, where T is to be chosen. Define xo( t )  - so, and 
t 

x n + l ( t )  = 50 + / ( L x n ( 7 )  + ( @ x ~ ) ( T )  + f ( T ) ) ~ T  , n >_ 0, 0 5 t 5 T 
0 

(34) 
For n 2 1 

which implies 



Now choose T to  make %(@(L)  + M) < 1. Then consider 

co 

x(t) = xo(t) + C ( x n + l ( t )  - x.(t)) E LpT1 
n=O 

Then it  follows that LyjTl  

xn(t) --+ ~ ( t )  
Taking limits on equation (34)) and using the continuity of O and integration operators in 
L [ , O ' ~ ] ,  yields t 

x(t) = 50 + ( ~ x ( r )  + (ox)(T) + f ( r ) )dr  (o.e.) (39) 

which implies that x solves (31) a.e. in [0, TI. The argument above can be easily extended to  
show uniqueness. 

It remains to  see whether we can extend the solution x to  the real line. Clearly, it suffices 
t o  show we can do so in the interval [O,2T]. Define 

and 

Now, for t < T ,  xn+,(t) = x(t). This uses the fact that x(t) solves 
(41) in [0, TI, and that O is causal. Then we have, for T < t 5 2T and n 2 1, 

At this point, the same argument as before applies, and we have a solution x(t)  on [0,2T]. 

6 Example 

The following example illustrates some of the various techniques and algorithms presented 
in the previous sections. It consists of the interconnection of two mechanical systems with 
uncertain parameters. Define the parameters as 

k1 = l+Sk l ,  bl I= l+Sbl ,  ml =: 1 + S m l  

kz = 1 +6k2, b2 = O+Sbz, m2 = 2+Sm2 

The uncertainty can take on various forms. For example, the damping of system 1 could 
be interpreted as being nominally 1, with a constant or time varying perturbation to  the 
nominal damping. It could also be interpreted as being nominally 1 with the addition of an 
operator that acts on the velocity of the mass and converts it to  a force. 

The equations of motion governing the two systems are 

fl = (1 + S m l ) 6  + (1 + Sbl)x:'I + (1 + Skl)xl 

f2  = (2 + Sm2)x2 + Sb2i2 + (1 + Sk2)x2 



SYS'I'l3M 1 Figure 5: Systems 1 and $YSTEM 2 

In order t o  construct GON representations of the two systems, we need to  modify the proce- 
dure outlined in the representation section to allow for uncertainty. A GON representation 
of system 1 can be constructed as follows: 

Define 

21 = 21 

z2 = i1 

23 = 6 k l %  

24 = 6blz2 

25 = (1 + ~,,)-'S,,(zl + 22 + 23 + 24 - fi) 

= Srnl(21 + 22 + ~3 + 24 - 25 - fi) 
then 

i 2  = 25 - (21 + 22 + 23 +Zq - fl) 
We then have the following equations 

where 



which gives us the required regular GON representation of system 1. A similar construction 
can be performed for system 2, yielding 

Let us define the interconnection of the two systems as follows: 

Figure 6: Interconnected system 

where (49) has a trivial regular GON representation. This corresponds to  "bolting" masses 
1 and 2 together. Combining systems 1 and 2 with the interconnection constraints results in 
the following GON representation of the interconnected system: 



Note that the interconnection is not regular, since D is not surjective. This is expected, 
since we are forcing the two masses to  move together, and thus their positions and velocities 
are constrained to  be equal. Thus we would expect the system to have only two integration 
states, not four. 

After performing the reduction procedure (which terminates after two iterations), we have 
the following regular GON representation of the interconnected system: 

Using Proposition 4 and Theorem 1, this system must have one input, which is restricted to 
be one of f ,  fi, or f 2 .  Choosing f as an input, Corollary 1 implies 



where II implies 

Several things about the 1/0 map are worth noting. First of all, the eigenvalues of Allon 
are -.I667 f .7993i. These correspond to  the natural modes of the unperturbed system, as 
can be easily verified. Secondly, if we assume that the perturbations are real constants, a Real 
p test on the uncertainty portion AIlou of AIlo yields a result of .6667. This indicates that 
there exist perturbations of size 1.5 which will cause the I / O  representation to  be ill-posed. 
This corresponds to  S,, and S,, being -1.5, which would make the effective mass of the 
interconnected system, ml + m2, equal to 0. It is interesting to  note that a Real p test on 
system 1 before interconnection would have yielded a value of 1. This of course corresponds 
t o  S,, being -1, and causing the mass to be 0. The interconnection thus extends the region 
of validity of the mass uncertainty. This might flag that something non-physical might occur 
in the interconnected system for a valid value of the uncertainty. For the above example, this 
reflects the fact that we don't expect mass 1 to be negative, even though the interconnected 
system is still well posed for a negative value for mass 1. 

7 Conclusions 

In this paper, an attempt has been made to relate robust control and behavioral paradigms 
by incorporating structured uncertainty into the description of behavioral systems. This is 
accomplished by expressing behavioral systems as kernels of operators obtained by an LFT 
between a constant matrix and an uncertainty structure. An uncertain dynamical system 
has been defined, and methods of interconnection developed. Finally, a method for obtaining 
input-output maps from behavioral descriptions of uncertain dynamical systems has been 
outlined, which makes possible the use of existing robust control methodologies. 
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